Some distal limb structures develop in mice lacking Sonic hedgehog signaling
نویسندگان
چکیده
Patterning of the limb is coordinated by the complex interplay of three signaling regions: the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the non-ridge limb ectoderm. Complex feedback loops exist between Shh in the ZPA, Bmps and their antagonists in the adjacent mesenchyme, Wnt7a in the dorsal ectoderm and Fgfs in the AER. In contrast to the previously reported complete absence of digits in Shh(-/-) mice, we show that one morphologically distinct digit, with a well-delineated nail and phalanges, forms in Shh(-/-) hindlimbs, while intermediate structures are severely truncated and fused. The presence of distal autopod elements is consistent with weak expression of Hoxd13 in Shh(-/-) hindlimbs. Shh(-/-) forelimbs in contrast have one distal cartilage element, a less-well differentiated nail and fused intermediate bones. Interestingly, Ihh is expressed at the tip of Shh mutant limbs and could account for formation of distal structures. In contrast to previous studies we also demonstrate that Shh signaling is required for maintenance of normal Fgf8 expression, since expression of Fgf8, unlike some other AER marker genes, is rapidly lost from anterior to posterior after E10.5, with only a small domain of Fgf8 expression remaining posteriorly. Furthermore, loss of expanded Fgf8 expression is paralleled by a collapse of the handplate. Our data show that development of most intermediate elements of the hindlimb skeleton are Shh-dependent, and that Shh signaling is required for anterior-posterior expansion of the AER in both limbs and for the subsequent branching of zeugopod and autopod elements. Finally, we show that Shh is also required for outgrowth of the limb ectoderm and thus for the formation of a distinct limb compartment.
منابع مشابه
The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملThe role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves
The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...
متن کاملMolecular mechanisms underlying limb anomalies associated with cholesterol deficiency during gestation: implications of Hedgehog signaling.
Human disorders caused by inborn errors of cholesterol biosynthesis are characterized by dysmorphogenesis of multiple organs. This includes limb malformations that are observed at high frequency in some disorders, such as the Smith-Lemli-Opitz syndrome, indicating a pivotal role of cholesterol in limb morphogenesis. Recently, it has been demonstrated that cholesterol can modulate the activity o...
متن کاملConservation in hedgehog signaling: induction of a chicken patched homolog by Sonic hedgehog in the developing limb.
Hedgehog genes have been implicated in inductive signaling during development in a variety of organisms. A key element of the hedgehog signaling system is encoded by the gene patched. In Drosophila hedgehog regulates gene expression by antagonizing the action of patched. In addition, patched is itself a transcriptional target of hedgehog signaling. We have isolated a chicken patched homolog and...
متن کاملSonic Hedgehog Signaling in Limb Development
The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 100 شماره
صفحات -
تاریخ انتشار 2001